当前位置:首页 > 网站源码 > 正文内容

python帮助文档中文版(python help中文)

网站源码2年前 (2023-03-15)506

今天给各位分享python帮助文档中文版的知识,其中也会对python help中文进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

python-socketio 文档翻译

教程:

python-socketio 原文地址 ,在google浏览器中可以翻译为中文去使用。

首先要搞明白几个问题:

说明

1)第一种room是每一个单独的客户端都有的。(通过 session ID 可以找到)

2)第二种是应用程序自己创建的。

在下面这个方法中,如果省略掉room参数,将会自动发送给所有的连接了的客户端。

译文:

Python-socketio实现了一个Python Socket.IO 服务,这个服务可以单独运行也可以综合于一个web项目中。下面是一些它的特征:

什么是Socket.IO?

Socket.IO是一个基于事件的双向通讯的传输协议(一般是web浏览器),和一个服务端。原始的客户端和服务端组件实现是通过JavaScript写的。

入门指南

可以使用 pip 安装Socket.IO:

下面是一个使用 aiohttp 框架(只支持Python 3.5+)实现异步IO的 Socket.IO server 简单的例子:

下面是一个类似的例子,但是使用的Flask和Eventlet的例子,兼容Python2.7和3.3+:

客户端应用必须引入 socket.io-client 库(1.3.5版本以及以上,越高越好)。

每次客户端连接到服务器的连接事件处理程序调用sid(会话ID)分配给连接和WSGI环境字典。

每次客户端连接到服务端的 conenct 事件都是由sid(session ID)分配到连接和WSGI环境字典调用的。服务端可以检查身份认证或者其他的头部信息去决定是否这个客户端允许被连接。要想拒绝一个客户端的连接,这个处理器必须返回 False 。

当客户端发送发送一个事件给服务端,相应的事件处理器会被 sid 和这个信息调用,可以是单个或者多个参数。这个应用可以定义尽量多的如果被需要的可以被事件处理器关联的事件。一个事件可以通过一个名称简单定义。

当一个客户端连接中断了, disconnect 事件就被调用,允许应用去执行清理工作。

服务端

Socket.IO 服务端是 socketio.Server 类的实例,他们可以被一个WSGI适用应用程序使用 socketio.Middleware 去合并:

使用 socketio.Server.on() 方法来注册服务端的事件处理器:

对于异步服务端来说,事件处理器可以是常规方法,或者是协程:

聊天室

因为Socket.IO是一个双向的协议,服务端可以在任意时间发送消息给任意的连接到的客户端。为了让它方便去将客户端定位到组中,应用程序可以将客户端放入到聊天室中去,然后将消息定位到整个聊天室中。

当客户端第一次连接,他们是被分配到他们自己的聊天室中,这个聊天是是以session ID(sid 参数会传递给所有的事件处理器)命名的。应用可以通过 socketio.Server.enter_room() 和 socketio.Server.leave_room() 自由地去创建聊天室和管理客户端。客户端可以在尽量多的房间里,也可以根据需求尽量频繁地被拉入拉出聊天室。当他们的连接不在特别的时候,单独的聊天室将会分配给她它们,应用程序可以自由地增加和移除客户端从聊天室中,尽管它只要这样做就会失去定位独立客户端的能力。

socketio.Server.emit() 方法会获得一个事件名称,一个可能是 str , bytes , list , dict 或者 tuple 类型的消息载体。当发送一个 tuple ,在其中的元素必须是上面的其他类型。元组中的元素将会被传递给客户端的回调函数为多个参数。定位一个个人客户端,客户端的 sid 将会被给一个聊天室(假设这个应用没有修改这些初始的聊天室)。定位所有的连接的客户端们,这个聊天室参数将会被触发。

通常在聊天室中当广播一个消息到一个用户组的时候,发送者是否接受他自己的消息是可选的。 soicketio.Server.emit() 方法提供了一个可选的 skip_sid 参数去指定一个想在广播中跳过的客户端。

Response

当一个客户端发送一个事件给服务端,它可以选择提供一个回调方法,当服务端返回一个响应的时候会被触发。服务端可以便捷地从相应的事件处理器返回它从而提供一个响应。

事件处理器可以返回一个单独的值,一个带多个值的元组。这个在客户端的回调函数将会调用这些返回的值。

Callbacks

回调

服务端可以请求一个响应通过发送一个事件给客户端。 socketio.Server.emit() 方法有一个可选的 callback 参数能够被设置为可回调的。当这个参数被传递之后,当客户端返回相应的时候,这个可回调的方法将会被请求。

当广播给多个客户端的时候使用回调函数是不被推荐的,因为回调方法将会被只执行一次。

Namespace

命名空间

Socket.IO 协议支持多个逻辑性连接,所有的多路复用都是在相同的物理连接上。客户端可以通过给每个连接指定不同的 namespace 从而开多个连接。一个命名空间是由 主机名+端口+路径名称构成的。比如,连接到 将会开一个连接到命名空间 /chat 。

由于分离的不同的session ID( sid s),不同的事件处理器,不同的聊天室,每一个命名空间都是独立的。应用程序使用多个命名空间从而来区分命名空间,是非常重要的。可以参考 socketio.Server 类。

当 namespace 参数被触发了,比如设置为 None 或者 / , 那么一个默认的命名空间将会被使用。

Class-Based Namespaces

作为一个基于装饰器的事件处理器的代替,这个属于一个命名空间事件处理器可以被创建为 socketio.Namesapce 的子类:

对于基于异步io的服务端,域名空间必须继承与 socketio.AsyncNamespace , 也可以定义普通的方法或者协程作为事件处理器:

当使用基于类的命名空间的时候,任何被服务端接受的事件将会被分派到一个被事件名称命名的方法中作为方法名称(with the on_pfrefix )。比如:事件 my_event 将会被一个名叫 on_my_event 的方法处理。

python3.11如何将帮助文件调为中文

python变成中文版的实现方法如下:

首先下载pycharm汉化包;

然后将“resources_en.jar”文件更名为“resources_cn.jar”;

最后将“resources_cn.jar”文件复制回lib文件夹内即可。

PS:建议不要使用汉化版,会导致一些小问题,例如设置界面显示不完整等。

谁有python 中文api帮助文档chm格式的啊?

Python只有txt、pdf、epub、html款,没有chm款。

在此处可以在线查看Python文档:Python 文档(中文)

在此处可以下载txt、pdf、epub、html的Python 3.8.5文档:Python 3.8.5 文档下载

python数据分析与应用-Python数据分析与应用 PDF 内部全资料版

给大家带来的一篇关于Python数据相关的电子书资源,介绍了关于Python方面的内容,本书是由人民邮电出版社出版,格式为PDF,资源大小281 MB,黄红梅 张良均编写,目前豆瓣、亚马逊、当当、京东等电子书综合评分为:7.8。

内容介绍

目录

第1章 Python数据分析概述 1

任务1.1 认识数据分析 1

1.1.1 掌握数据分析的概念 2

1.1.2 掌握数据分析的流程 2

1.1.3 了解数据分析应用场景 4

任务1.2 熟悉Python数据分析的工具 5

1.2.1 了解数据分析常用工具 6

1.2.2 了解Python数据分析的优势 7

1.2.3 了解Python数据分析常用类库 7

任务1.3 安装Python的Anaconda发行版 9

1.3.1 了解Python的Anaconda发行版 9

1.3.2 在Windows系统中安装Anaconda 9

1.3.3 在Linux系统中安装Anaconda 12

任务1.4 掌握Jupyter Notebook常用功能 14

1.4.1 掌握Jupyter Notebook的基本功能 14

1.4.2 掌握Jupyter Notebook的高 级功能 16

小结 19

课后习题 19

第2章 NumPy数值计算基础 21

任务2.1 掌握NumPy数组对象ndarray 21

2.1.1 创建数组对象 21

2.1.2 生成随机数 27

2.1.3 通过索引访问数组 29

2.1.4 变换数组的形态 31

任务2.2 掌握NumPy矩阵与通用函数 34

2.2.1 创建NumPy矩阵 34

2.2.2 掌握ufunc函数 37

任务2.3 利用NumPy进行统计分析 41

2.3.1 读/写文件 41

2.3.2 使用函数进行简单的统计分析 44

2.3.3 任务实现 48

小结 50

实训 50

实训1 创建数组并进行运算 50

实训2 创建一个国际象棋的棋盘 50

课后习题 51

第3章 Matplotlib数据可视化基础 52

任务3.1 掌握绘图基础语法与常用参数 52

3.1.1 掌握pyplot基础语法 53

3.1.2 设置pyplot的动态rc参数 56

任务3.2 分析特征间的关系 59

3.2.1 绘制散点图 59

3.2.2 绘制折线图 62

3.2.3 任务实现 65

任务3.3 分析特征内部数据分布与分散状况 68

3.3.1 绘制直方图 68

3.3.2 绘制饼图 70

3.3.3 绘制箱线图 71

3.3.4 任务实现 73

小结 77

实训 78

实训1 分析1996 2015年人口数据特征间的关系 78

实训2 分析1996 2015年人口数据各个特征的分布与分散状况 78

课后习题 79

第4章 pandas统计分析基础 80

任务4.1 读/写不同数据源的数据 80

4.1.1 读/写数据库数据 80

4.1.2 读/写文本文件 83

4.1.3 读/写Excel文件 87

4.1.4 任务实现 88

任务4.2 掌握DataFrame的常用操作 89

4.2.1 查看DataFrame的常用属性 89

4.2.2 查改增删DataFrame数据 91

4.2.3 描述分析DataFrame数据 101

4.2.4 任务实现 104

任务4.3 转换与处理时间序列数据 107

4.3.1 转换字符串时间为标准时间 107

4.3.2 提取时间序列数据信息 109

4.3.3 加减时间数据 110

4.3.4 任务实现 111

任务4.4 使用分组聚合进行组内计算 113

4.4.1 使用groupby方法拆分数据 114

4.4.2 使用agg方法聚合数据 116

4.4.3 使用apply方法聚合数据 119

4.4.4 使用transform方法聚合数据 121

4.4.5 任务实现 121

任务4.5 创建透视表与交叉表 123

4.5.1 使用pivot_table函数创建透视表 123

4.5.2 使用crosstab函数创建交叉表 127

4.5.3 任务实现 128

小结 130

实训 130

实训1 读取并查看P2P网络贷款数据主表的基本信息 130

实训2 提取用户信息更新表和登录信息表的时间信息 130

实训3 使用分组聚合方法进一步分析用户信息更新表和登录信息表 131

实训4 对用户信息更新表和登录信息表进行长宽表转换 131

课后习题 131

第5章 使用pandas进行数据预处理 133

任务5.1 合并数据 133

5.1.1 堆叠合并数据 133

5.1.2 主键合并数据 136

5.1.3 重叠合并数据 139

5.1.4 任务实现 140

任务5.2 清洗数据 141

5.2.1 检测与处理重复值 141

5.2.2 检测与处理缺失值 146

5.2.3 检测与处理异常值 149

5.2.4 任务实现 152

任务5.3 标准化数据 154

5.3.1 离差标准化数据 154

5.3.2 标准差标准化数据 155

5.3.3 小数定标标准化数据 156

5.3.4 任务实现 157

任务5.4 转换数据 158

5.4.1 哑变量处理类别型数据 158

5.4.2 离散化连续型数据 160

5.4.3 任务实现 162

小结 163

实训 164

实训1 插补用户用电量数据缺失值 164

实训2 合并线损、用电量趋势与线路告警数据 164

实训3 标准化建模专家样本数据 164

课后习题 165

第6章 使用scikit-learn构建模型 167

任务6.1 使用sklearn转换器处理数据 167

6.1.1 加载datasets模块中的数据集 167

6.1.2 将数据集划分为训练集和测试集 170

6.1.3 使用sklearn转换器进行数据预处理与降维 172

6.1.4 任务实现 174

任务6.2 构建并评价聚类模型 176

6.2.1 使用sklearn估计器构建聚类模型 176

6.2.2 评价聚类模型 179

6.2.3 任务实现 182

任务6.3 构建并评价分类模型 183

6.3.1 使用sklearn估计器构建分类模型 183

6.3.2 评价分类模型 186

6.3.3 任务实现 188

任务6.4 构建并评价回归模型 190

6.4.1 使用sklearn估计器构建线性回归模型 190

6.4.2 评价回归模型 193

6.4.3 任务实现 194

小结 196

实训 196

实训1 使用sklearn处理wine和wine_quality数据集 196

实训2 构建基于wine数据集的K-Means聚类模型 196

实训3 构建基于wine数据集的SVM分类模型 197

实训4 构建基于wine_quality数据集的回归模型 197

课后习题 198

第7章 航空公司客户价值分析 199

任务7.1 了解航空公司现状与客户价值分析 199

7.1.1 了解航空公司现状 200

7.1.2 认识客户价值分析 201

7.1.3 熟悉航空客户价值分析的步骤与流程 201

任务7.2 预处理航空客户数据 202

7.2.1 处理数据缺失值与异常值 202

7.2.2 构建航空客户价值分析关键特征 202

7.2.3 标准化LRFMC模型的5个特征 206

7.2.4 任务实现 207

任务7.3 使用K-Means算法进行客户分群 209

7.3.1 了解K-Means聚类算法 209

7.3.2 分析聚类结果 210

7.3.3 模型应用 213

7.3.4 任务实现 214

小结 215

实训 215

实训1 处理信用卡数据异常值 215

实训2 构造信用卡客户风险评价关键特征 217

实训3 构建K-Means聚类模型 218

课后习题 218

第8章 财政收入预测分析 220

任务8.1 了解财政收入预测的背景与方法 220

8.1.1 分析财政收入预测背景 220

8.1.2 了解财政收入预测的方法 222

8.1.3 熟悉财政收入预测的步骤与流程 223

任务8.2 分析财政收入数据特征的相关性 223

8.2.1 了解相关性分析 223

8.2.2 分析计算结果 224

8.2.3 任务实现 225

任务8.3 使用Lasso回归选取财政收入预测的关键特征 225

8.3.1 了解Lasso回归方法 226

8.3.2 分析Lasso回归结果 227

8.3.3 任务实现 227

任务8.4 使用灰色预测和SVR构建财政收入预测模型 228

8.4.1 了解灰色预测算法 228

8.4.2 了解SVR算法 229

8.4.3 分析预测结果 232

8.4.4 任务实现 234

小结 236

实训 236

实训1 求取企业所得税各特征间的相关系数 236

实训2 选取企业所得税预测关键特征 237

实训3 构建企业所得税预测模型 237

课后习题 237

第9章 家用热水器用户行为分析与事件识别 239

任务9.1 了解家用热水器用户行为分析的背景与步骤 239

9.1.1 分析家用热水器行业现状 240

9.1.2 了解热水器采集数据基本情况 240

9.1.3 熟悉家用热水器用户行为分析的步骤与流程 241

任务9.2 预处理热水器用户用水数据 242

9.2.1 删除冗余特征 242

9.2.2 划分用水事件 243

9.2.3 确定单次用水事件时长阈值 244

9.2.4 任务实现 246

任务9.3 构建用水行为特征并筛选用水事件 247

9.3.1 构建用水时长与频率特征 248

9.3.2 构建用水量与波动特征 249

9.3.3 筛选候选洗浴事件 250

9.3.4 任务实现 251

任务9.4 构建行为事件分析的BP神经网络模型 255

9.4.1 了解BP神经网络算法原理 255

9.4.2 构建模型 259

9.4.3 评估模型 260

9.4.4 任务实现 260

小结 263

实训 263

实训1 清洗运营商客户数据 263

实训2 筛选客户运营商数据 264

实训3 构建神经网络预测模型 265

课后习题 265

附录A 267

附录B 270

参考文献 295

学习笔记

Jupyter Notebook(此前被称为 IPython notebook)是一个交互式笔记本,支持运行 40 多种编程语言。 Jupyter Notebook 的本质是一个 Web 应用程序,便于创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。 用途包括:数据清理和转换,数值模拟,统计建模,机器学习等等 。 定义 (推荐学习:Python视频教程) 用户可以通过电子邮件,Dropbox,GitHub 和 Jupyter Notebook Viewer,将 Jupyter Notebook 分享给其他人。 在Jupyter Notebook 中,代码可以实时的生成图像,视频,LaTeX和JavaScript。 使用 数据挖掘领域中最热门的比赛 Kaggle 里的资料都是Jupyter 格式 。 架构 Jupyter组件 Jupyter包含以下组件: Jupyter Notebook 和 ……

本文实例讲述了Python实现的微信好友数据分析功能。分享给大家供大家参考,具体如下: 这里主要利用python对个人微信好友进行分析并把结果输出到一个html文档当中,主要用到的python包为 itchat , pandas , pyecharts 等 1、安装itchat 微信的python sdk,用来获取个人好友关系。获取的代码 如下: import itchatimport pandas as pdfrom pyecharts import Geo, Baritchat.login()friends = itchat.get_friends(update=True)[0:]def User2dict(User): User_dict = {} User_dict["NickName"] = User["NickName"] if User["NickName"] else "NaN" User_dict["City"] = User["City"] if User["City"] else "NaN" User_dict["Sex"] = User["Sex"] if User["Sex"] else 0 User_dict["Signature"] = User["Signature"] if User["Signature"] else "NaN" ……

基于微信开放的个人号接口python库itchat,实现对微信好友的获取,并对省份、性别、微信签名做数据分析。 效果: 直接上代码,建三个空文本文件stopwords.txt,newdit.txt、unionWords.txt,下载字体simhei.ttf或删除字体要求的代码,就可以直接运行。 #wxfriends.py 2018-07-09import itchatimport sysimport pandas as pdimport matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei']#绘图时可以显示中文plt.rcParams['axes.unicode_minus']=False#绘图时可以显示中文import jiebaimport jieba.posseg as psegfrom scipy.misc import imreadfrom wordcloud import WordCloudfrom os import path#解决编码问题non_bmp_map = dict.fromkeys(range(0x10000, sys.maxunicode + 1), 0xfffd) #获取好友信息def getFriends():……

Python数据分析之双色球基于线性回归算法预测下期中奖结果示例

本文实例讲述了Python数据分析之双色球基于线性回归算法预测下期中奖结果。分享给大家供大家参考,具体如下: 前面讲述了关于双色球的各种算法,这里将进行下期双色球号码的预测,想想有些小激动啊。 代码中使用了线性回归算法,这个场景使用这个算法,预测效果一般,各位可以考虑使用其他算法尝试结果。 发现之前有很多代码都是重复的工作,为了让代码看的更优雅,定义了函数,去调用,顿时高大上了 #!/usr/bin/python# -*- coding:UTF-8 -*-#导入需要的包import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport operatorfrom sklearn import datasets,linear_modelfrom sklearn.linear_model import LogisticRegression#读取文件d……

以上就是本次介绍的Python数据电子书的全部相关内容,希望我们整理的资源能够帮助到大家,感谢大家对鬼鬼的支持。

注·获取方式:私信(666)

ffmpeg-python中文文档(三)——API参考

表示上游节点的传出边缘;可以用来创建更多的下游节点。

输入文件 URL (ffmpeg -i option)

在一个 ffmpeg 命令行中包含所有给定的输出

输出文件地址

不询问就覆盖输出文件(ffmpeg -y 选项)

在指定文件上运行 ffprobe 并返回输出的 JSON 表示。

构建用于调用 ffmpeg 的命令行。

构建要传递给 ffmpeg 的命令行参数。

为提供的节点图调用 ffmpeg 。

参数

为提供的节点图异步调用 ffmpeg。

参数

例子

运行和流式输入:

运行并捕获输出:

使用 numpy 逐帧处理视频:

通过重新混合颜色通道来调整视频输入帧。

连接音频和视频流,将它们一个接一个地连接在一起。

筛选器适用于同步视频和音频流的片段。所有段必须具有每种类型的相同数量的流,这也是输出时的流数。

参数

裁剪输入视频。

参数

在输入图像上绘制一个彩色框。

参数

使用 libfreetype 库从视频顶部的指定文件中绘制文本字符串或文本。

要启用此过滤器的编译,您需要使用 --enable-libfreetype . 要启用默认字体回退和字体选项,您需要使用 --enable-libfontconfig . 要启用 text_shaping 选项,您需要使用 --enable-libfribidi

参数

· box - 用于使用背景颜色在文本周围绘制一个框。该值必须是 1(启用)或 0(禁用)。框的默认值为 0。

· boxborderw – 使用 boxcolor 设置要在框周围绘制的边框宽度。boxborderw 的默认值为 0。

· boxcolor - 用于在文本周围绘制框的颜色。有关此选项的语法,请查看 ffmpeg-utils 手册中的“颜色”部分。 boxcolor 的默认值为“white”。

· line_spacing – 使用 box 设置要在框周围绘制的边框的行间距(以像素为单位)。line_spacing 的默认值为 0。

· borderw – 使用边框颜色设置要在文本周围绘制的边框宽度。边框的默认值为 0。

· bordercolor – 设置用于在文本周围绘制边框的颜色。有关此选项的语法,请查看 ffmpeg-utils 手册中的“颜色”部分。边框颜色的默认值为“黑色”。

· 扩展- 选择文本的扩展方式。可以是 none、strftime(已弃用)或 normal(默认)。有关详细信息,请参阅下面的文本扩展部分。

· basetime – 设置计数的开始时间。值以微秒为单位。仅适用于已弃用的 strftime 扩展模式。要在正常扩展模式下进行模拟,请使用 pts 函数,提供开始时间(以秒为单位)作为第二个参数。

· fix_bounds - 如果为 true,检查并修复文本坐标以避免剪切。

· fontcolor - 用于绘制字体的颜色。有关此选项的语法,请查看 ffmpeg-utils 手册中的“颜色”部分。fontcolor 的默认值为“黑色”。

· fontcolor_expr – 与文本相同的扩展字符串以获得动态字体颜色值。默认情况下,此选项具有空值并且不被处理。设置此选项时,它会覆盖 fontcolor 选项。

· font - 用于绘制文本的字体系列。默认情况下无。

· fontfile – 用于绘制文本的字体文件。必须包含路径。如果禁用了 fontconfig 支持,则此参数是必需的。

· alpha – 绘制应用 alpha 混合的文本。该值可以是介于 0.0 和 1.0 之间的数字。该表达式也接受相同的变量 x、y。默认值为 1。请参阅 fontcolor_expr。

· fontsize – 用于绘制文本的字体大小。字体大小的默认值为 16。

· text_shaping – 如果设置为 1,则在绘制文本之前尝试对文本进行整形(例如,反转从右到左文本的顺序并加入阿拉伯字符)。否则,只需按照给定的方式绘制文本。默认为 1(如果支持)。

· ft_load_flags –用于加载字体的标志。这些标志映射了 libfreetype 支持的相应标志,并且是以下值的组合:

默认值为“默认”。有关更多信息,请参阅 FT_LOAD_* libfreetype 标志的文档。

· shadowcolor – 用于在已绘制文本后面绘制阴影的颜色。有关此选项的语法,请查看 ffmpeg-utils 手册中的“颜色”部分。shadowcolor 的默认值为“黑色”。

· shadowx – 文本阴影位置相对于文本位置的 x 偏移量。它可以是正值或负值。默认值为“0”。

· shadowy – 文本阴影位置相对于文本位置的 y 偏移量。它可以是正值或负值。默认值为“0”。

· start_number – n/frame_num 变量的起始帧号。默认值为“0”。

· tabsize - 用于呈现选项卡的空格数大小。默认值为 4。

· timecode – 以“hh:mm:ss[:;.]ff”格式设置初始时间码表示。它可以带或不带文本参数使用。必须指定 timecode_rate 选项。

· rate – 设置时间码帧率(仅限时间码)。

· timecode_rate – 的别名rate。

· r – 的别名rate。

· tc24hmax – 如果设置为 1,时间码选项的输出将在 24 小时左右回绕。默认值为 0(禁用)。

· text -- 要绘制的文本字符串。文本必须是 UTF-8 编码字符序列。如果没有使用参数 textfile 指定文件,则此参数是必需的。

· textfile – 包含要绘制的文本的文本文件。文本必须是 UTF-8 编码字符序列。如果没有使用参数 text 指定文本字符串,则此参数是必需的。如果同时指定了 text 和 textfile,则会引发错误。

· reload – 如果设置为 1,文本文件将在每一帧之前重新加载。一定要自动更新它,否则它可能会被部分读取,甚至失败。

· x – 指定将在视频帧内绘制文本的偏移量的表达式。它相对于输出图像的左边框。默认值为“0”。

· y - 指定将在视频帧内绘制文本的偏移量的表达式。它相对于输出图像的上边框。默认值为“0”。有关接受的常量和函数的列表,请参见下文。

表达式常量:

x 和 y 的参数是包含以下常量和函数的表达式:

· dar:输入显示纵横比,同 (w / h) * sar

· hsub:水平色度子样本值。例如,对于像素格式“yuv422p”,hsub 为 2,vsub 为 1。

· vsub:垂直色度子样本值。例如,对于像素格式“yuv422p”,hsub 为 2,vsub 为 1。

· line_h:每个文本行的高度

· lh:别名为line_h.

· main_h:输入高度

· h: 的别名main_h。

· H: 的别名main_h。

· main_w:输入宽度

· w: 的别名main_w。

· W: 的别名main_w。

· ascent:对于所有渲染的字形,从基线到用于放置字形轮廓点的最高/上网格坐标的最大距离。这是一个正值,因为网格的 Y 轴向上。

· max_glyph_a: 的别名ascent。

· 下降:对于所有渲染的字形,从基线到用于放置字形轮廓点的最低网格坐标的最大距离。由于网格的方向,这是一个负值,Y 轴向上。

· max_glyph_d: 的别名descent。

· max_glyph_h:最大字形高度,即渲染文本中包含的所有字形的最大高度,相当于上升-下降。

· max_glyph_w:最大字形宽度,即渲染文本中包含的所有字形的最大宽度。

· n:输入帧数,从0开始

· rand(min, max):返回一个包含在 min 和 max 之间的随机数

· sar:输入样本纵横比。

· t:时间戳,以秒为单位,如果输入时间戳未知,则为 NAN

· text_h:渲染文本的高度

· th: 的别名text_h。

· text_w:渲染文本的宽度

· tw: 的别名text_w。

· x:绘制文本的 x 偏移坐标。

· y:绘制文本的 y 偏移坐标。

这些参数允许 x 和 y 表达式相互引用,因此您可以例如指定 y=x/dar.

应用自定义过滤器。

filter通常由更高级别的过滤器函数使用,例如 hflip ,但如果缺少过滤器实现 ffmpeg-python ,您可以 filter 直接调用以 ffmpeg-python 将过滤器名称和参数逐字传递给 ffmpeg 。

参数

函数名称后缀_是为了避免与标准 pythonfilter 函数混淆。

例子

替代名称 filter ,以免与内置的 pythonfilter 运算符冲突。

应用具有一个或多个输出的自定义过滤器。

这 filter 与过滤器可以产生多个输出相同。

要引用输出流,请使用 .stream 运算符或括号简写:

例子

水平翻转输入视频。

修改输入的色调和/或饱和度。

参数

将一个视频叠加在另一个视频之上。

参数

更改输入帧的 PTS(表示时间戳)。

FFmpeg里有两种时间戳:DTS(Decoding Time Stamp)和PTS(Presentation Time Stamp)。 顾名思义,前者是解码的时间,后者是显示的时间。

参数

修剪输入,使输出包含输入的一个连续子部分。

参数

垂直翻转输入视频。

应用缩放和平移效果。

参数

python-docx官方文档中文

没有找到。

第一个:

有tables返回。

第二个:

用re来解决,\d{4}\D\d{1,2}\D\d{1,2}\D ,这些匹配到的就是日期,替换成你要的。

关于python帮助文档中文版和python help中文的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

扫描二维码推送至手机访问。

版权声明:本文由我的模板布,如需转载请注明出处。


本文链接:http://sdjcht.com/post/6517.html

分享给朋友:

“python帮助文档中文版(python help中文)” 的相关文章

电脑自带的word在哪里(联想电脑自带的word在哪里)

电脑自带的word在哪里(联想电脑自带的word在哪里)

本篇文章给大家谈谈电脑自带的word在哪里,以及联想电脑自带的word在哪里对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、苹果电脑自带的word在哪里 2、怎么把电脑...

手机游戏免费脚本辅助(手游脚本软件免费下载)

手机游戏免费脚本辅助(手游脚本软件免费下载)

本篇文章给大家谈谈手机游戏免费脚本辅助,以及手游脚本软件免费下载对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、LoL手游辅助脚本用什么好? 2、胜利女神:NIKKE的...

vue的响应式原理和数据绑定(如何理解vue数据双向绑定原理)

vue的响应式原理和数据绑定(如何理解vue数据双向绑定原理)

本篇文章给大家谈谈vue的响应式原理和数据绑定,以及如何理解vue数据双向绑定原理对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、vue数据双向绑定的原理+响应式原理...

星光直播app手机版下载(星光直播官网)

星光直播app手机版下载(星光直播官网)

今天给各位分享星光直播app手机版下载的知识,其中也会对星光直播官网进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、星光Tv直播密码是多少 2、《森林里的...

装修找活平台app哪个好2022(找装修活的平台)

装修找活平台app哪个好2022(找装修活的平台)

本篇文章给大家谈谈装修找活平台app哪个好2022,以及找装修活的平台对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 本文目录一览: 1、装修工在哪个平台上可以接活? 2、装修工在哪个平台...

问道手游java源码架设(问道游戏源码)

问道手游java源码架设(问道游戏源码)

今天给各位分享问道手游java源码架设的知识,其中也会对问道游戏源码进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!本文目录一览: 1、如何代理问道手游私服 2、程序编写,c...